Respuesta :
The answer is √6 mi.
The formula is: d = √(3h/2)
Pam:
h = 324 ft
d = √(3 * 324/2) = √486 = √(81 * 6) = √81 * √6 = 9√6 mi
Adam:
h = 400 ft
d = √(3 * 400/2) = √600 = √(100 * 6) = √100 * √6 = 10√6 mi
How much farther can Adam see to the horizon?
Adam - Pam = 10√6 - 9√6 = √6 mi
The formula is: d = √(3h/2)
Pam:
h = 324 ft
d = √(3 * 324/2) = √486 = √(81 * 6) = √81 * √6 = 9√6 mi
Adam:
h = 400 ft
d = √(3 * 400/2) = √600 = √(100 * 6) = √100 * √6 = 10√6 mi
How much farther can Adam see to the horizon?
Adam - Pam = 10√6 - 9√6 = √6 mi
The Adam can see the horizon at the distance of 2.45 miles
Given data:
Pam's eye-level height above the sea-level is, h = 324 ft.
Adam's eye-level height above sea level is, h' = 400 ft.
The distance of Pam from the horizon can be given as,
[tex]d=\sqrt{3 \times \dfrac{h}{2} }[/tex]
Substitute the values as,
[tex]d=\sqrt{3 \times \dfrac{324}{2} }\\d=22.04 \;\rm mi[/tex]
And, the distance of Adam from the horizon can be calculated as,
[tex]d'=\sqrt{3 \times \dfrac{h'}{2} }\\\\d'=\sqrt{3 \times \dfrac{400}{2} }\\\\d'=24.49 \;\rm mi[/tex]
The net distance by Adam too see the horizon is,
[tex]d_{net}=d'-d\\d_{net}=24.49 - 22.04\\d_{net}=2.45 \;\rm mi[/tex]
Thus, we can conclude that Adam can see the horizon at the distance of 2.45 miles.
Learn more about the horizon and its distance from here:
https://brainly.com/question/12366928