Respuesta :
The standard form of a quadratic equation is :
ax² + bx + c = 0
And the quadratic formula is:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} .
So, first step is to compare the given equation with the above equation to get the value of a, b and c.
So, a = -1, b = 2 and c = 1.
Next step is to plug in these values in the above formula. Therefore,
[tex] x=\frac{-2\pm\sqrt{(2)^2-4*(-1)*(1)}}{2*(-1)} [/tex]
[tex] =\frac{-2\pm\sqrt{4+4}}{-2} [/tex]
[tex] =\frac{-2\pm\sqrt{8}}{-2} [/tex]
[tex] =\frac{-2\pm\sqrt{4*2}}{-2} [/tex]
[tex] =\frac{-2\pm\sqrt{4}*\sqrt{2}}{-2} [/tex]
[tex] =\frac{-2\pm2*\sqrt{2}}{-2} [/tex]
[tex] =-\frac{-2}{-2} \pm\frac{2\sqrt{2}}{-2} [/tex]
So, x =[tex] 1 \pm\sqrt{2} . [/tex]