In the diagram of circle C, m∠VWX is 43°. What is m?
39°
41°
78°
82°
![In the diagram of circle C mVWX is 43 What is m 39 41 78 82 class=](https://us-static.z-dn.net/files/ddf/3dcd865ca686bfc095a7aca5e69a1f97.png)
we know that
The measurement of the external angle is the semi-difference of the arcs it comprises.
so
in this problem
m∠VWX=[tex]\frac{1}{2} (arc\ UY-arc\ VX)[/tex]
we have
m∠VWX=[tex]43\°[/tex]
[tex]arc\ UY=125\°[/tex]
Substitute and solve for arc VX
[tex]43\°=\frac{1}{2}*(125\°-arc\ VX)[/tex]
[tex]86\°=(125\°-arc\ VX)[/tex]
[tex]arc\ VX=125\°-86\°=39\°[/tex]
therefore
the answer is
the measure of arc VX is [tex]39\°[/tex]