Respuesta :
Sum of all Angles of a quadrilateral=360
Ang.A + Ang.B+ Ang.C + Ang.D =360
=> (52x + 16) + (72x + 20)
+ ( 32x + 68) + (32x + 40)=360
=> 188x= 216
> x = 1.1489
Ang.D=32 X 1.1489+ 40= 76.7648
Ang.A + Ang.B+ Ang.C + Ang.D =360
=> (52x + 16) + (72x + 20)
+ ( 32x + 68) + (32x + 40)=360
=> 188x= 216
> x = 1.1489
Ang.D=32 X 1.1489+ 40= 76.7648
Considering the Quadrilateral ABCD as convex Quadrilateral
→ The Sum of angles of any Quadrilateral is 360°.
→∠A +∠B +∠C +∠D= 360°
→52 x + 16° + 72 x + 20° + 32 x +68°+ 32 x +40° = 360°
Adding the term containing variables separately and the constant terms separately
→ (52 x + 72 x +32 x+32 x) + (16° +20°+68°+40°)=360°
→ 188 x + 144°=360°
→ 188 x = 360°-144°
→ 188 x= 216°
→x= [tex]\frac{216}{188}=\frac{54}{47}[/tex]
∠D= 32 ×[tex]\frac{54}{47}[/tex] +40
∠D=36.765 +40= 76.765 (approx)