Respuesta :

[tex]( \sqrt[6]{x^{7} z^{-2}})^{5}=( \sqrt[6]{x^{7} \frac{1}{z^{2}} })^{5}= ( \sqrt[6]{ \frac{x^{7}}{z^{2}} })^{5}= ( \frac{ x^{7} }{z^{2}} )^{5/6} [/tex]

Answer:

A. [tex](\frac{x^7}{z^2})^{\frac{5}{6}[/tex]

Step by step explanation:

We have been given an radical expression [tex](\sqrt[6]{x^7z^{-2}})^5[/tex] and we are asked to choose the correct option which represent our expression with a rational exponent.

Using exponent rule for negative exponents [tex]a^{-m}=\frac{1}{a^m}[/tex] we can write our expression as:

[tex](\sqrt[6]{x^7*\frac{1}{z^{2}}})^5[/tex]

[tex](\sqrt[6]{\frac{x^7*1}{z^{2}}})^5[/tex]

[tex](\sqrt[6]{\frac{x^7}{z^{2}}})^5[/tex]

Using the exponent property [tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex] we can write our expression as:

[tex]((\frac{x^7}{z^2})^{\frac{1}{6}})^5[/tex]

Using exponent property [tex](a^m)^n=a^{m*n}[/tex] we can write our expression as:

[tex](\frac{x^7}{z^2})^{\frac{1}{6}\times5}[/tex]

[tex](\frac{x^7}{z^2})^{\frac{5}{6}[/tex]

Therefore, after representing our expression with rational exponent our given expression will be: [tex](\frac{x^7}{z^2})^{\frac{5}{6}[/tex] and option a is the correct choice.

ACCESS MORE