A rational expression simplifies to 3. The denominator of the original expression is given. Which polynomial is the numerator?
[tex] \frac{?}{3x^2+15x+18} [/tex]

A. [tex]9x^2+45x+54[/tex]
B. [tex]x^2+5x+6[/tex]
C. [tex]3x^2+15x+54[/tex]
D. [tex]3x+6[/tex]

Respuesta :

[tex]3=3\cdot1=3\cdot\dfrac{3x^2+15x+18}{3x^2+15x+18}=\dfrac{3\cdot(3x^2+15x+18)}{3x^2+15x+18}=\dfrac{9x^2+45x+54}{3x^2+15x+18}[/tex]

Answer A.

Answer:

[tex]\frac{3((3x^2+15x+18)}{3x^2+15x+18}=3[/tex]

Therefore, option A is correct.

Step-by-step explanation:

We have been given an expression:

[tex]\frac{?}{3x^2+15x+18}[/tex]

The simplified form is 3

That means the given rational function is equal to 3

[tex]3=\frac{?}{3x^2+15x+18}[/tex]

Now, we will choose the first option

[tex]9x^2+45x+54[/tex]

Taking 3 common from above equation we get:

[tex]3(3x^2+15x+18)[/tex]

Hence, when we put the above equation in numerator denominator and numerator gets cancel and final result will be 3

[tex]\frac{3((3x^2+15x+18)}{3x^2+15x+18}=3[/tex]

Therefore, option A is correct.

ACCESS MORE