PLEASEEEE HELPPP!!!!!
Question 1 - Read the proof.
Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100°
Prove: △HKJ ~ △LNP
Statement Reason

1. m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° 1. given
2. m∠H + m∠J + m∠K = 180° 2. ?
3. 30° + 50° + m∠K = 180° 3. substitution property
4. 80° + m∠K = 180° 4. addition
5. m∠K = 100° 5. subtraction property of equality
6. m∠J = m∠P; m∠K = m∠N 6. substitution
7. ∠J ≅ ∠P; ∠K ≅ ∠N 7. if angles are equal then they are congruent
8. △HKJ ~ △LNP 8. AA similarity theorem
Which reason is missing in step 2?
A)CPCTC
B)definition of supplementary angles
C)triangle parts relationship theorem
D)triangle angle sum theorem

Question 2-
△ABC is an isosceles triangle with legs AB and AC.
△AYX is also an isosceles triangle with legs AY and AX.
The proof that △ABC ~ △AYX is shown.
Statements Reasons
1. △ABC is isosceles with legs AB and AC;
△AYX is also isosceles with legs AY and AX. 1. given
2. AB ≅ AC and AY ≅ AX 2. definition of isosceles triangle
3. AB = AC and AY = AX 3. definition of congruency
4. AY • AC = AX • AC 4. multiplication property of equality
5. AY • AC = AX • AB 5. substitution property of equality
6.AY*AC/AB = AX 6. division property of equality
7. AY/AB = AX/AC 7. division property of equality
8. ? 8. ?
9. △ABC ~ △AYX 9. SAS similarity theorem
Which statement and reason are missing in the proof?
A)∠A ≅ ∠A; reflexive property
B)∠X ≅ ∠X; reflexive property
C)∠ABC ≅ ∠AYX; corresponding angles of similar triangles
D)∠ABC ≅ ∠AXY; corresponding angles of similar triangles

Question 3 - Line RS intersects triangle BCD at two points and is parallel to segment DC.
Which statements are correct? Check all that apply.
A)△BCD is similar to △BSR.
B)BR/RD = BS/SC
C)If the ratio of BR to BD is , then it is possible that BS = 6 and BC = 3.
D)(BR)(SC) = (RD)(BS)
E)BR/RS = BS/SC

PLEASEEEE HELPPPQuestion 1 Read the proof Given mH 30 mJ 50 mP 50 mN 100 Prove HKJ LNP Statement Reason 1 mH 30 mJ 50 mP 50 mN 100 1 given 2 mH mJ mK 180 2 3 30 class=
PLEASEEEE HELPPPQuestion 1 Read the proof Given mH 30 mJ 50 mP 50 mN 100 Prove HKJ LNP Statement Reason 1 mH 30 mJ 50 mP 50 mN 100 1 given 2 mH mJ mK 180 2 3 30 class=
PLEASEEEE HELPPPQuestion 1 Read the proof Given mH 30 mJ 50 mP 50 mN 100 Prove HKJ LNP Statement Reason 1 mH 30 mJ 50 mP 50 mN 100 1 given 2 mH mJ mK 180 2 3 30 class=

Respuesta :

Question 1
Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100°
To prove that: △HKJ ~ △LNP
Statement                                                                              Reason

1. m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100°   1. given
2. m∠H + m∠J + m∠K = 180°                                      2. ?
3. 30° + 50° + m∠K = 180°                                          3. substitution property
4. 80° + m∠K = 180°                                                    4. addition
5. m∠K = 100°                                                              5. subtraction property of equality
6. m∠J = m∠P; m∠K = m∠N                                        6. substitution
7. ∠J ≅ ∠P; ∠K ≅ ∠N                                                   7. if angles are equal then they are congruent
8. △HKJ ~ △LNP                                                        8. AA similarity theorem

The reason that is missing in step 2 is triangle angle sum theorem.
The triangle angle sum theorem states that the sum of the measures of the interior angles of a triangle is 180°.

Question 2
Given that △ABC is an isosceles triangle with legs AB and AC and △AYX is also an isosceles triangle with legs AY and AX.

To prove that △ABC ~ △AYX.
Statements                                                               Reasons
1. △ABC is isosceles with legs AB and AC;
△AYX is also isosceles with legs AY and AX.         1. given
2. AB ≅ AC and AY ≅ AX                                        2. definition of isosceles triangle
3. AB = AC and AY = AX                                         3. definition of congruency
4. AY • AC = AX • AC                                              4. multiplication property of equality
5. AY • AC = AX • AB                                              5. substitution property of equality
6. AY
• AC / AB = AX                                              6. division property of equality
7. AY/AB = AX/AC                                                  7. division property of equality
8. ?                                                                          8. ?
9. △ABC ~ △AYX                                                   9. SAS similarity theorem

 The statement and reason missing in the proof are ∠A ≅ ∠A; reflexive property

SAS Similarity or Side-Angle-Side similarity states that when two triangles have corresponding angles that are congruent and corresponding sides with identical ratios, then the triangles are similar.

Question 3 -
Given that line RS intersects triangle BCD at two points and is parallel to segment DC.
The statements thet are correct is △BCD is similar to △BSR.

Answer:

∠A ≅ ∠A; reflexive property

Step-by-step explanation: