Classify each function shown in the tables below as either linear or exponential.
A) The following function is x y
-3 0
-1 6
1 12
3 18
B) The following function is x y
1 13
2 6.5
3 3.25
4 1.625

Respuesta :

A is linear  ( the graph would be a line with slope 3) 
Note that as x increases by 2 y increases by 6.


Answer:

Function 1 is linear and Function 2 is exponential.

Step-by-step explanation:

Function 1:

x       y

-3     0  

-1      6  

1       12  

3       18

Calculate the slope

Formula of slope :[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]

[tex](x_1,y_1)=(-3,0)[/tex]

[tex](x_2,y_2)=(-1,6)[/tex]

Substitute the values in the formula

[tex]m = \frac{6-0}{-1-(-3)}[/tex]

[tex]m = \frac{6}{2}[/tex]

[tex]m = 3[/tex]

Now using another two points

[tex](x_1,y_1)=(1,12)[/tex]

[tex](x_2,y_2)=(3,18)[/tex]

Substitute the values in the formula

[tex]m = \frac{18-12}{3-1}[/tex]

[tex]m = \frac{6}{2}[/tex]

[tex]m = 3[/tex]

Function 2:

x      y

1      13  

2     6.5  

3     3.25  

4     1.625

Calculate the slope

Formula of slope :[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]

[tex](x_1,y_1)=(1,13)[/tex]

[tex](x_2,y_2)=(2,6.5)[/tex]

Substitute the values in the formula

[tex]m = \frac{6.5-13}{2-1}[/tex]

[tex]m = \frac{-6.5}{2}[/tex]

[tex]m = -3.5[/tex]

Now using another two points

[tex](x_1,y_1)=(3,2.5)[/tex]

[tex](x_2,y_2)=(4,1.625)[/tex]

Substitute the values in the formula

[tex]m = \frac{1.625-2.5}{4-3}[/tex]

[tex]m = \frac{-0.875}{1}[/tex]

[tex]m = -0.875[/tex]

In Function 1 slope remains same with distinct points.

In Function 2 Slope varies with distinct points

Thus Function 1 is linear and Function 2 is exponential.

ACCESS MORE