Respuesta :
A is linear ( the graph would be a line with slope 3)
Note that as x increases by 2 y increases by 6.
Note that as x increases by 2 y increases by 6.
Answer:
Function 1 is linear and Function 2 is exponential.
Step-by-step explanation:
Function 1:
x y
-3 0
-1 6
1 12
3 18
Calculate the slope
Formula of slope :[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]
[tex](x_1,y_1)=(-3,0)[/tex]
[tex](x_2,y_2)=(-1,6)[/tex]
Substitute the values in the formula
[tex]m = \frac{6-0}{-1-(-3)}[/tex]
[tex]m = \frac{6}{2}[/tex]
[tex]m = 3[/tex]
Now using another two points
[tex](x_1,y_1)=(1,12)[/tex]
[tex](x_2,y_2)=(3,18)[/tex]
Substitute the values in the formula
[tex]m = \frac{18-12}{3-1}[/tex]
[tex]m = \frac{6}{2}[/tex]
[tex]m = 3[/tex]
Function 2:
x y
1 13
2 6.5
3 3.25
4 1.625
Calculate the slope
Formula of slope :[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]
[tex](x_1,y_1)=(1,13)[/tex]
[tex](x_2,y_2)=(2,6.5)[/tex]
Substitute the values in the formula
[tex]m = \frac{6.5-13}{2-1}[/tex]
[tex]m = \frac{-6.5}{2}[/tex]
[tex]m = -3.5[/tex]
Now using another two points
[tex](x_1,y_1)=(3,2.5)[/tex]
[tex](x_2,y_2)=(4,1.625)[/tex]
Substitute the values in the formula
[tex]m = \frac{1.625-2.5}{4-3}[/tex]
[tex]m = \frac{-0.875}{1}[/tex]
[tex]m = -0.875[/tex]
In Function 1 slope remains same with distinct points.
In Function 2 Slope varies with distinct points
Thus Function 1 is linear and Function 2 is exponential.