Respuesta :
If I'm understanding correctly, then...
(X^2+5x+4)/(x+2)=the length of the other side
Length= x+3+((-3)/(x+2))
(X^2+5x+4)/(x+2)=the length of the other side
Length= x+3+((-3)/(x+2))
Answer:
The length of the other side is [tex]b=\frac{(x+4)(x+1)}{x+2}[/tex]
Step-by-step explanation:
Given : The area of a rectangle is given by the expression [tex]x^2 + 5x + 4[/tex]. If the length of one side is given by x+2.
To find : What is the length of the other side?
Solution :
The formula of area of rectangle is
[tex]A=length\times breadth[/tex]
Where, [tex]A=x^2 + 5x + 4[/tex]
and one side length is [tex]l=x+2[/tex]
We have to fond other side i.e. breadth b
Substitute in the formula,
[tex]x^2 + 5x + 4=x+2\times b[/tex]
[tex]b=\frac{x^2 + 5x + 4}{x+2}[/tex]
[tex]b=\frac{x^2+4x+x + 4}{x+2}[/tex]
[tex]b=\frac{(x+4)(x+1)}{x+2}[/tex]
Therefore, The length of the other side is [tex]b=\frac{(x+4)(x+1)}{x+2}[/tex]