What is the area of a parallelogram whose vertices are A(−4, 9) , B(11, 9) , C(5, −1) , and D(−10, −1) ?



Enter your answer in the box.

|__| units²

What is the area of a parallelogram whose vertices are A4 9 B11 9 C5 1 and D10 1 Enter your answer in the box units class=

Respuesta :

AB = 15
CD = 15
Distance from AB to CD = 10
the formula of area K= b*h
K= 15*10 = 150

Ver imagen nguyenvui
Ver imagen nguyenvui

Let

[tex]A(-4,9)\\B(11,9)\\C(5,-1) \\D(-10,-1)\\E(-4.-1)[/tex]          

using a graphing tool

see the attached figure to better understand the problem

we know that

Parallelogram is a quadrilateral with opposite sides parallel and equal in length

so

[tex]AB=CD \\AD=BC[/tex]

The area of a parallelogram is equal to

[tex]A=B*h[/tex]  

where

B is the base

h is the height

the base B is equal to the distance AB

the height h is equal to the distance AE

Step 1

Find the distance AB

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-4,9)\\B(11,9)[/tex]      

substitute the values

[tex]d=\sqrt{(9-9)^{2}+(11+4)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(15)^{2}}[/tex]

[tex]dAB=15\ units[/tex]

Step 2

Find the distance AE

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-4,9)\\E(-4.-1)[/tex]      

substitute the values

[tex]d=\sqrt{(-1-9)^{2}+(-4+4)^{2}}[/tex]

[tex]d=\sqrt{(-10)^{2}+(0)^{2}}[/tex]

[tex]dAE=10\ units[/tex]

Step 3

Find the area of the parallelogram

The area of a parallelogram is equal to

[tex]A=B*h[/tex]

[tex]A=AB*AE[/tex]

substitute the values

[tex]A=15*10=150\ units^{2}[/tex]

therefore

the answer is

the area of the parallelogram is [tex]150\ units^{2}[/tex]

Ver imagen calculista
ACCESS MORE