Respuesta :

Answer:[tex]\frac{p}{q}[/tex] : ±1, ± [tex]\frac{1}{3}[/tex],  ± [tex]\frac{1}{9}[/tex], ±2 ±[tex]\frac{2}{3}[/tex],  ± [tex]\frac{2}{9}[/tex], ±4,  ± [tex]\frac{4}{3}[/tex]

± [tex]\frac{4}{9}[/tex].

Step-by-step explanation:

Given: f(x) = [tex]9x^4-2x^2-3x+4[/tex] .

To find: According to the Rational Root Theorem, what are all the potential rational roots .

Solution: The rational theorem states that if f(x) has integer coefficients and [tex]\frac{p}{q}[/tex] is a rational zero, then q is the factor of leading coefficient and p is the factor of constant term.

                        f(x) = [tex]9x^4-2x^2-3x+4[/tex] .

Factor of leading coefficient (q) = ±9, ±3, ±1.

Factors of constant term( p)  =  ±4, ±2, ±1.

According to rational root theorem the rational roots are in the form [tex]\frac{p}{q}[/tex] : ±1, ± [tex]\frac{1}{3}[/tex],  ± [tex]\frac{1}{9}[/tex], ±2 ±[tex]\frac{2}{3}[/tex],  ± [tex]\frac{2}{9}[/tex], ±4,  ± [tex]\frac{4}{3}[/tex]

± [tex]\frac{4}{9}[/tex].

Therefore , potential rational roots are [tex]\frac{p}{q}[/tex] : ±1, ± [tex]\frac{1}{3}[/tex],  ± [tex]\frac{1}{9}[/tex], ±2 ±[tex]\frac{2}{3}[/tex],  ± [tex]\frac{2}{9}[/tex], ±4,  ± [tex]\frac{4}{3}[/tex]

± [tex]\frac{4}{9}[/tex].

According to the Rational Root Theorem, the potential rational roots of f(x) are[tex]\pm 1,\pm \frac 13,\pm \frac 19,\pm 2, \pm \frac 23, \pm \frac 29, \pm 4, \pm \frac 43, \pm \frac 49[/tex]

The polynomial function is given as:

[tex]f(x) = 9x^4 - 2x^2 - 3x + 4[/tex]

For a polynomial function

[tex]f(x) = px^n +........+q[/tex],

The possible rational roots are calculated using:

[tex]Roots = \pm \frac{Factors\ of\ q}{Factors\ of p}[/tex]

So, we have:

[tex]Roots = \pm \frac{Factors\ of\ 4}{Factors\ of 9}[/tex]

List the factors of 4 and 9

[tex]Roots = \pm \frac{1,2,4}{1, 3, 9}[/tex]

Split

[tex]Roots = \pm 1,\pm \frac 13,\pm \frac 19,\pm 2, \pm \frac 23, \pm \frac 29, \pm 4, \pm \frac 43, \pm \frac 49[/tex]

Hence, all the possible rational roots are: [tex]\pm 1,\pm \frac 13,\pm \frac 19,\pm 2, \pm \frac 23, \pm \frac 29, \pm 4, \pm \frac 43, \pm \frac 49[/tex]

Read more about rational root theorem at:

https://brainly.com/question/10937559