Respuesta :
Answer:[tex]\frac{p}{q}[/tex] : ±1, ± [tex]\frac{1}{3}[/tex], ± [tex]\frac{1}{9}[/tex], ±2 ±[tex]\frac{2}{3}[/tex], ± [tex]\frac{2}{9}[/tex], ±4, ± [tex]\frac{4}{3}[/tex]
± [tex]\frac{4}{9}[/tex].
Step-by-step explanation:
Given: f(x) = [tex]9x^4-2x^2-3x+4[/tex] .
To find: According to the Rational Root Theorem, what are all the potential rational roots .
Solution: The rational theorem states that if f(x) has integer coefficients and [tex]\frac{p}{q}[/tex] is a rational zero, then q is the factor of leading coefficient and p is the factor of constant term.
f(x) = [tex]9x^4-2x^2-3x+4[/tex] .
Factor of leading coefficient (q) = ±9, ±3, ±1.
Factors of constant term( p) = ±4, ±2, ±1.
According to rational root theorem the rational roots are in the form [tex]\frac{p}{q}[/tex] : ±1, ± [tex]\frac{1}{3}[/tex], ± [tex]\frac{1}{9}[/tex], ±2 ±[tex]\frac{2}{3}[/tex], ± [tex]\frac{2}{9}[/tex], ±4, ± [tex]\frac{4}{3}[/tex]
± [tex]\frac{4}{9}[/tex].
Therefore , potential rational roots are [tex]\frac{p}{q}[/tex] : ±1, ± [tex]\frac{1}{3}[/tex], ± [tex]\frac{1}{9}[/tex], ±2 ±[tex]\frac{2}{3}[/tex], ± [tex]\frac{2}{9}[/tex], ±4, ± [tex]\frac{4}{3}[/tex]
± [tex]\frac{4}{9}[/tex].
According to the Rational Root Theorem, the potential rational roots of f(x) are[tex]\pm 1,\pm \frac 13,\pm \frac 19,\pm 2, \pm \frac 23, \pm \frac 29, \pm 4, \pm \frac 43, \pm \frac 49[/tex]
The polynomial function is given as:
[tex]f(x) = 9x^4 - 2x^2 - 3x + 4[/tex]
For a polynomial function
[tex]f(x) = px^n +........+q[/tex],
The possible rational roots are calculated using:
[tex]Roots = \pm \frac{Factors\ of\ q}{Factors\ of p}[/tex]
So, we have:
[tex]Roots = \pm \frac{Factors\ of\ 4}{Factors\ of 9}[/tex]
List the factors of 4 and 9
[tex]Roots = \pm \frac{1,2,4}{1, 3, 9}[/tex]
Split
[tex]Roots = \pm 1,\pm \frac 13,\pm \frac 19,\pm 2, \pm \frac 23, \pm \frac 29, \pm 4, \pm \frac 43, \pm \frac 49[/tex]
Hence, all the possible rational roots are: [tex]\pm 1,\pm \frac 13,\pm \frac 19,\pm 2, \pm \frac 23, \pm \frac 29, \pm 4, \pm \frac 43, \pm \frac 49[/tex]
Read more about rational root theorem at:
https://brainly.com/question/10937559