Respuesta :
The value of [tex] \frac{r1}{r2} [/tex] is [tex] \sqrt{} \frac{5}{2} [/tex]
The given diffusion rate equation is:
[tex] \frac{r1}{r2} = \sqrt{} \frac{m2}{m1} [/tex]
Now,
[tex] \frac{r1}{r2} = \sqrt{} \frac{30}{12} [/tex]
Breaking 30 and 12 into its factors
= \sqrt{} \frac{2×3×5}{2×2×3} [/tex]
= \sqrt{} \frac{5}{2} [/tex]
The given diffusion rate equation is:
[tex] \frac{r1}{r2} = \sqrt{} \frac{m2}{m1} [/tex]
Now,
[tex] \frac{r1}{r2} = \sqrt{} \frac{30}{12} [/tex]
Breaking 30 and 12 into its factors
= \sqrt{} \frac{2×3×5}{2×2×3} [/tex]
= \sqrt{} \frac{5}{2} [/tex]
Answer:
The simplified radical form is given as:
[tex]\dfrac{r_1}{r_2}=\sqrt{\dfrac{5}{2}}[/tex]
Step-by-step explanation:
It is given that:
the ratio of the diffusion rates of two gases is given by the formula:
[tex]\dfrac{r_1}{r_2}=\dfrac{\sqrt{m_2}}{\sqrt{m_1}}[/tex]
where [tex]m_1\ and\ m_2[/tex] are the masses of the molecules of the two gases.
Now we are given:
[tex]m_1=12\ units\ \text{and}\ m_2=30\ units.[/tex]
Hence,
[tex]\dfrac{r_1}{r_2}=\dfrac{\sqrt{30}}{\sqrt{12}}\\\\\\\dfrac{r_1}{r_2}=\dfrac{\sqrt{30}}{2\sqrt{3}}\\\\\dfrac{r_1}{r_2}=\dfrac{\sqrt{2}\cdot \sqrt{3}\cdot \sqrt{5}}{2\sqrt{3}}\\\\\dfrac{r_1}{r_2}=\dfrac{\sqrt{2}\cdot \sqrt{5}}{2}[/tex]
[tex]\dfrac{r_1}{r_2}=\dfrac{\sqrt{5}}{\sqrt{2}}[/tex]
Hence, the simplified radical form is:
[tex]\dfrac{r_1}{r_2}=\sqrt{\dfrac{5}{2}}[/tex]