Respuesta :
Answer:
[tex]f(x)=2\cdot 3^x[/tex] has fastest rate for increasing value of x
Step-by-step explanation:
Given:
[tex]g(x)=10x+15[/tex]
[tex]h(x)=5x^2+x+10[/tex]
[tex]f(x)=2\cdot 3^x[/tex]
We are given three function to choose fastest rate for increasing value of x .
[tex]\text{Linear: }g(x)=10x+15[/tex]
g(x) is linear function because the power of x is 1.
[tex]\text{Quadratic: }h(x)=5x^2+x+10[/tex]
h(x) is quadratic function because power of x is 2
[tex]\text{Exponential :}f(x)=2\cdot 3^x[/tex]
f(x) is exponential function because x as power.
Order of rate of increasing of growth function for increasing value of x
Exponential > Quadratic > Linear
f(x) > h(x) > g(x)
Please see the attachment for increasing order of function.
Hence, [tex]f(x)=2\cdot 3^x[/tex] has fastest rate for increasing value of x
![Ver imagen isyllus](https://us-static.z-dn.net/files/d63/2d26a48000a8732bb8e2a31215c92851.jpg)