GIVING BRAINLIEST!!! Which function grows at the fastest rate for increasing values of x? YOU CAN CHOOSE MORE THAN 1 BTW
g(x)=10x+15
h(x)=5x2+x+10
f(x)=2⋅3x

Respuesta :

Answer:

[tex]f(x)=2\cdot 3^x[/tex] has fastest rate for increasing value of x

Step-by-step explanation:

Given:

[tex]g(x)=10x+15[/tex]

[tex]h(x)=5x^2+x+10[/tex]

[tex]f(x)=2\cdot 3^x[/tex]

We are given three function to choose fastest rate for increasing value of x .

[tex]\text{Linear: }g(x)=10x+15[/tex]

g(x) is linear function because the power of x is 1.

[tex]\text{Quadratic: }h(x)=5x^2+x+10[/tex]

h(x) is quadratic function because power of x is 2

[tex]\text{Exponential :}f(x)=2\cdot 3^x[/tex]

f(x) is exponential function because x as power.

Order of rate of increasing of growth function for increasing value of x

Exponential > Quadratic > Linear

  f(x) > h(x) > g(x)

Please see the attachment for increasing order of function.

Hence, [tex]f(x)=2\cdot 3^x[/tex] has fastest rate for increasing value of x

Ver imagen isyllus

Answer: f(x)=2•3^x

Step-by-step explanation:

ACCESS MORE