Respuesta :

see the attached picture to better understand the problem

we know that

The opposite angles in a quadrilateral inscribed in a circle are supplementary.

So

in this problem

m∠K+m∠M=[tex] 180 [/tex]

m∠L+m∠N=[tex] 180 [/tex]

Step [tex] 1 [/tex]

Find the measure of angle M

m∠K+m∠M=[tex] 180 [/tex]

m∠M=[tex] 180 [/tex]-m∠K

m∠M=[tex] 180-67 [/tex]

m∠M=[tex] 113 [/tex]°

Step [tex] 2 [/tex]

Find the measure of angle N

m∠L+m∠N=[tex] 180 [/tex]

m∠N=[tex] 180 [/tex]-m∠L

m∠N=[tex] 180-119 [/tex]

m∠N=[tex] 61 [/tex]°

therefore

the answer is

m∠M=[tex] 113 [/tex]°

m∠N=[tex] 61 [/tex]°

Ver imagen calculista

The two angles M and N are m∠M=113° and m∠N=61° when Angle K measures 67º and angle L measures 119°

What are Supplementary angles?

The opposite angles in a quadrilateral inscribed in a circle are supplementary.

in this problem

m∠K+m∠M=180

m∠L+m∠N=180

Step 1

Find the measure of angle M

m∠K+m∠M=180

m∠M=180-m∠K

m∠M=180-67

m∠M=113°

Step 2

Find the measure of angle N

m∠L+m∠N=180

m∠N=180-m∠L

m∠N=180-119

m∠N=61°

m∠M=113° m∠N=61°

Hence the two angles M and N are m∠M=113° and m∠N=61° when Angle K measures 67º and angle L measures 119°

To know more about Supplementary angles follow

https://brainly.com/question/12919120a