In the diagram of circle R, m∠FGH is 50°. What is m? 130° 230° 260° 310°
![In the diagram of circle R mFGH is 50 What is m 130 230 260 310 class=](https://us-static.z-dn.net/files/df3/df3fd2dab384a3981e6819a249345277.png)
we know that
The measurement of the exterior angle is the semi-difference of the arcs which comprises
In this problem
∠FGH is the exterior angle
∠FGH=[tex]50\°[/tex]
∠FGH=[tex]\frac{1}{2}(arc\ FEH-arc\ FH)[/tex]
[tex]50\°=\frac{1}{2}(arc\ FEH-arc\ FH)[/tex]
[tex]100\°=(arc\ FEH-arc\ FH)[/tex] -----> equation A
[tex]arc\ FEH+arc\ FH=360\°[/tex]
[tex]arc\ FH=360\°-arc\ FEH[/tex] --------> equation B
Substitute equation B in equation A
[tex]100\°=(arc\ FEH-[360\°-arc\ FEH])[/tex]
[tex]100\°=2arc\ FEH-360\°[/tex]
[tex]2arc\ FEH=360\°+100\°[/tex]
[tex]arc\ FEH=230\°[/tex]
therefore
The answer is
The measure of arc FEH is equal to [tex]230\°[/tex]
The value of x from the diagram is 130 degrees
From the given diagram;
Angle at the vertex is equal to half of the difference of angles at the arcs.
Similarly, arcEFH + x = 360
acEFH = 360 - x
Substitute into equation 3 into the result (1) to have:
100 = 360 - x - x ................ 1
-260 = -2x
x = 130 degrees
Hence the value of x from the diagram is 130 degrees
Learn more on angle and arcs here: https://brainly.com/question/2005046