Respuesta :

we know that

The measurement of the exterior angle is the semi-difference of the arcs which comprises

In this problem

∠FGH is the exterior angle

∠FGH=[tex]50\°[/tex]

∠FGH=[tex]\frac{1}{2}(arc\ FEH-arc\ FH)[/tex]

[tex]50\°=\frac{1}{2}(arc\ FEH-arc\ FH)[/tex]

[tex]100\°=(arc\ FEH-arc\ FH)[/tex]  -----> equation A

[tex]arc\ FEH+arc\ FH=360\°[/tex]

[tex]arc\ FH=360\°-arc\ FEH[/tex] --------> equation B

Substitute equation B in equation A

[tex]100\°=(arc\ FEH-[360\°-arc\ FEH])[/tex]

[tex]100\°=2arc\ FEH-360\°[/tex]

[tex]2arc\ FEH=360\°+100\°[/tex]

[tex]arc\ FEH=230\°[/tex]

therefore

The answer is

The measure of arc FEH is equal to [tex]230\°[/tex]

The value of x from the diagram is 130 degrees

Angles and circles

From the given diagram;

Angle at the vertex is equal to half of the difference of angles at the arcs.

  • 50 = 1/2(aecEFH - x)
  • 100 = arc EFH - x ................  1

Similarly, arcEFH + x = 360

acEFH = 360 - x

Substitute into equation 3 into the result (1) to have:

100 =  360 - x - x ................  1

-260 = -2x

x = 130 degrees

Hence the value of x from the diagram is 130 degrees

Learn more on angle and arcs here: https://brainly.com/question/2005046