Respuesta :

Answer:

[tex]\frac{y^2}{4}-\frac{x^2}{117}=1[/tex]

Step-by-step explanation:

The standard form of hyperbola centered at origin is given by:

[tex]\frac{y^2}{a^2}-\frac{x^2}{b^2}=1[/tex]             ....[1]

where,

vertices and foci are [tex](0, \pm a)[/tex] and [tex](0, \pm c)[/tex] respectively.

As per the statement:

The hyperbola with vertices at (0, ±2) and foci at (0, ±11).

⇒a = 2 and c = 11

⇒[tex]a^2 = 4[/tex] and [tex]c^2 = 121[/tex]

To find [tex]b^2[/tex]:

Using the equation:

[tex]b^2 = c^2-a^2[/tex]

then;

[tex]b^2 = 11^2-2^2 = 121-4 = 117[/tex]

⇒[tex]b^2 = 117[/tex]

Substitute the given values in [1] we have;

[tex]\frac{y^2}{4}-\frac{x^2}{117}=1[/tex]

Therefore, an equation in standard form for the hyperbola with vertices at (0, ±2) and foci at (0, ±11) is, [tex]\frac{y^2}{4}-\frac{x^2}{117}=1[/tex]