Respuesta :

The answer is (3x+4)(x-7)

Answer:

[tex]3x^{2} -17x-28=(x-7)(3x+4)[/tex]

Step-by-step explanation:

we have

[tex]3x^{2} -17x-28[/tex]

equate to zero

[tex]3x^{2} -17x-28=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]3x^{2} -17x=28[/tex]

Factor the leading coefficient

[tex]3(x^{2} -(17/3)x)=28[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]3(x^{2} -(17/3)x+(289/36))=28+(289/12)[/tex]

[tex]3(x^{2} -(17/3)x+(289/36))=(625/12)[/tex]

[tex](x^{2} -(17/3)x+(289/36))=(625/36)[/tex]

Rewrite as perfect squares

[tex](x-(17/6))^{2}=(625/36)[/tex]

[tex](x-(17/6))=(+/-)(25/6)[/tex]

[tex]x=(17/6)(+/-)(25/6)[/tex]

[tex]x=(17/6)(+)(25/6)=42/6=21/3[/tex]

[tex]x=(17/6)(-)(25/6)=-8/6=-4/3[/tex]

so

[tex]3x^{2} -17x-28=3(x-(21/3))(x+(4/3))[/tex]

[tex]3x^{2} -17x-28=(1/3)(3x-21)(3x+4)[/tex]

[tex]3x^{2} -17x-28=(x-7)(3x+4)[/tex]

ACCESS MORE