According to the ASA postulate it can be say that the triangle ABC and triangle MRQ are congruent because [tex]\rm \angle A = \angle R[/tex], [tex]\rm \angle B = \angle M[/tex], and sides, AB = MR.
Given :
- In triangle ABC, [tex]\rm \angle A = 42^\circ \;and \;\angle B = 53^\circ[/tex] .
- In triangle MRQ, [tex]\rm \angle R = 42^\circ \;and \;\angle Q = 85^\circ[/tex].
- Sides, AB = MR.
The sum of interior angles of a triangle is equal to [tex]180^\circ[/tex]. Now, in triangle MRQ:
[tex]\rm \angle M +\angle R +\angle Q =180^\circ[/tex]
[tex]\rm \angle M +42^\circ + 85^\circ = 180^\circ[/tex]
[tex]\rm \angle M = 180^\circ - 42^\circ-85^\circ[/tex]
[tex]\rm \angle M = 53^\circ[/tex]
From triangle ABC and triangle MRQ, it can be say that:
[tex]\rm \angle A = \angle R[/tex],
[tex]\rm \angle B = \angle M[/tex],
Sides, AB = MR.
Therefore, according to the ASA postulate it can be concluded that the triangle ABC and triangle MRQ are congruent.
For more information, refer the link given below:
https://brainly.com/question/19673210