Respuesta :
In cylindrical coordinates, the volume is given with
[tex]\displaystyle\int_{\theta=-\pi/2}^{\theta=\pi/2}\int_{r=0}^{r=9}\int_{z=0}^{z=r\cos\theta}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\int_{\theta=-\pi/2}^{\theta=\pi/2}\int_{r=0}^{r=9}r^2\cos\theta\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\left(\int_{\theta=-\pi/2}^{\theta=\pi/2}\cos\theta\,\mathrm d\theta\right)\left(\int_{r=0}^{r=9}r^2\,\mathrm dr\right)[/tex]
[tex]=486[/tex]
[tex]\displaystyle\int_{\theta=-\pi/2}^{\theta=\pi/2}\int_{r=0}^{r=9}\int_{z=0}^{z=r\cos\theta}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\int_{\theta=-\pi/2}^{\theta=\pi/2}\int_{r=0}^{r=9}r^2\cos\theta\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\left(\int_{\theta=-\pi/2}^{\theta=\pi/2}\cos\theta\,\mathrm d\theta\right)\left(\int_{r=0}^{r=9}r^2\,\mathrm dr\right)[/tex]
[tex]=486[/tex]
Answer:
486 units³
Step-by-step explanation:
Data:
Let the plain be given by the following equation:
[tex]x^{2} + y^{2} = 81[/tex]
The bounding plane is z = x or x = z
The volume is given by cyclical integration using the coordinates:
[tex]\int\limits^\theta = \frac{\pi }{2} _\theta = -\frac{\pi }{2} {rdzdr} \, d\theta[/tex]
Integrating gives:
= 486 units³