Respuesta :

In cylindrical coordinates, the volume is given with

[tex]\displaystyle\int_{\theta=-\pi/2}^{\theta=\pi/2}\int_{r=0}^{r=9}\int_{z=0}^{z=r\cos\theta}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\int_{\theta=-\pi/2}^{\theta=\pi/2}\int_{r=0}^{r=9}r^2\cos\theta\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\left(\int_{\theta=-\pi/2}^{\theta=\pi/2}\cos\theta\,\mathrm d\theta\right)\left(\int_{r=0}^{r=9}r^2\,\mathrm dr\right)[/tex]
[tex]=486[/tex]

Answer:

486 units³

Step-by-step explanation:

Data:

Let the plain be given by the following equation:

[tex]x^{2} + y^{2} = 81[/tex]

The bounding plane is  z = x or x = z

The volume is given by cyclical integration using the coordinates:

[tex]\int\limits^\theta = \frac{\pi }{2} _\theta = -\frac{\pi }{2} {rdzdr} \, d\theta[/tex]

Integrating gives:

= 486  units³

ACCESS MORE