Respuesta :
Answer:
width of the garden's is, g-6 unit
Step-by-step explanation:
Area of rectangle(A) is given by:
[tex]A = lw[/tex]
where
l is the length of the rectangle
w is the width of the rectangle.
As per the statement:
The area of a garden is given by the trinomial of [tex]g^2-2g-24[/tex] and the garden's length is g+4
⇒[tex]A = g^2-2g-24[/tex] square units and [tex]l = g+4[/tex] units
Factorize [tex]g^2-2g-24[/tex]
[tex]g^2-6g+4g-24 = g(g-6)+g(g-6)[/tex]
⇒[tex](g+4)(g-6)[/tex]
⇒A = [tex]g^2-2g-24=(g+4)(g-6)[/tex]
Substitute these in [1] we have;
[tex](g+4)(g-6)=(g+4) \cdot w[/tex]
Divide both sides by g+4 we have;
⇒[tex]g-6 = w[/tex]
Therefore, the width of the garden's is, g-6 unit