Respuesta :
ANSWER
[tex]x = - 16 \: or \: x = 16[/tex]
EXPLANATION
We can use two different methods to solve this question.
Method 1: Square Root Method
We have,
[tex] {x}^{2} = 256[/tex]
We take the plus or minus square root of both sides to obtain,
[tex]x = \pm \sqrt{256} [/tex]
This implies that;
[tex]x = \pm16[/tex]
We split the plus or minus sign to obtain,
[tex]x = - 16 \: or \: x = 16[/tex]
Method 2: Factorization Method
[tex] {x}^{2} = 256[/tex]
We equate everything to zero.
[tex] {x}^{2} - 256 = 0[/tex]
[tex] {x }^{2} - {16}^{2} = 0[/tex]
We apply difference of two squares
[tex](x - 16)(x + 16) = 0[/tex]
[tex]x + 16 = 0 \: or \: x - 16 = 0[/tex]
[tex]x = - 16 \: or \: x = 16[/tex]
[tex]x = - 16 \: or \: x = 16[/tex]
EXPLANATION
We can use two different methods to solve this question.
Method 1: Square Root Method
We have,
[tex] {x}^{2} = 256[/tex]
We take the plus or minus square root of both sides to obtain,
[tex]x = \pm \sqrt{256} [/tex]
This implies that;
[tex]x = \pm16[/tex]
We split the plus or minus sign to obtain,
[tex]x = - 16 \: or \: x = 16[/tex]
Method 2: Factorization Method
[tex] {x}^{2} = 256[/tex]
We equate everything to zero.
[tex] {x}^{2} - 256 = 0[/tex]
[tex] {x }^{2} - {16}^{2} = 0[/tex]
We apply difference of two squares
[tex](x - 16)(x + 16) = 0[/tex]
[tex]x + 16 = 0 \: or \: x - 16 = 0[/tex]
[tex]x = - 16 \: or \: x = 16[/tex]