Respuesta :
Answer-
All the potential rational roots are,
[tex]\pm \frac{1}{15}, \pm \frac{1}{5},\pm \frac{1}{3},\pm \frac{3}{5},\pm 1, \pm 3,[/tex]
Solution-
Rational Root Theorem
[tex]f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+.......+a_1x+a_0\ \ \ and\ a_n\neq 0[/tex]
All the potential rational roots are,
[tex]\pm (\dfrac{\text{factors of}\ a_0}{\text{factors of}\ a_n})[/tex]
The given polynomial is,
[tex]f(x) = 15x^{11}-6x^8+x^3-4x+3[/tex]
Here,
[tex]a_n=15,\ a_0=3[/tex]
[tex]\text{factors of}\ 15=1,3,5,15\\\\\text{factors of}\ 3=1,3[/tex]
The potential rational roots are,
[tex]=\pm \frac{1}{1},\pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm \frac{3}{1}, \pm \frac{3}{3}, \pm \frac{3}{5}, \pm \frac{3}{15}[/tex]
[tex]=\pm 1,\pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm 3, \pm 1, \pm \frac{3}{5}, \pm \frac{1}{5}[/tex]
[tex]= \pm \frac{1}{15}, \pm \frac{1}{5},\pm \frac{1}{3},\pm \frac{3}{5},\pm 1, \pm 3,[/tex]
The rational root theorem is used to determine the possible roots of a polynomial
The potential rational roots are: [tex]\mathbf{1,3,5,15,\frac{1}{3},\frac{5}{3},5}[/tex]
The polynomial is given as:
[tex]\mathbf{f(x) = 15x^{11} - 6x^8 + x^3 + 4x + 3}[/tex]
The leading coefficient is:
[tex]\mathbf{k_1= 15}[/tex]
The factors of 15 are:
[tex]\mathbf{k_1= 1, 3, 5, 15}[/tex]
Also:
The trailing coefficient is:
[tex]\mathbf{k_2= 3}[/tex]
The factors of 3 are:
[tex]\mathbf{k_2= 1, 3,}[/tex]
So, the possible roots of the polynomial is:
[tex]\mathbf{k = \frac{k_1}{k_2}}[/tex]
This gives:
[tex]\mathbf{k = \frac{1,3,5,15}{1,3}}[/tex]
Spit
[tex]\mathbf{k = \frac{1}{1},\frac{3}{1},\frac{5}{1},\frac{15}{1},\frac{1}{3},\frac{3}{3},\frac{5}{3},\frac{15}{3}}[/tex]
[tex]\mathbf{k = 1,3,5,15,\frac{1}{3},1,\frac{5}{3},5}[/tex]
Remove repetition
[tex]\mathbf{k = 1,3,5,15,\frac{1}{3},\frac{5}{3},5}[/tex]
Hence, the potential rational roots are: [tex]\mathbf{1,3,5,15,\frac{1}{3},\frac{5}{3},5}[/tex]
Read more about rational root theorem at:
https://brainly.com/question/9353378