[tex]\displaystyle\int_{x=1}^{x=\sqrt3}\sqrt{1+x^2}\,\mathrm dx[/tex]
With [tex]x=\tan t[/tex], we have [tex]\mathrm dx=\sec^2t\,\mathrm dt[/tex] and [tex]t=\arctan x[/tex]. So the integral is equivalent to
[tex]\displaystyle\int_{t=\arctan1}^{t=\arctan\sqrt3}\sqrt{1+\tan^2t}\sec^2t\,\mathrm dt[/tex]
[tex]=\displaystyle\int_{t=\pi/4}^{t=\pi/3}\sqrt{\sec^2t}\sec^2t\,\mathrm dt[/tex]
[tex]=\displaystyle\int_{t=\pi/4}^{t=\pi/3}\sec^3t\,\mathrm dt[/tex]
which is a fairly standard integral to compute. Using the power reduction formula or integrating by parts, you find
[tex]\displaystyle=\frac12\sec t\tan t\bigg|_{t=\pi/4}^{t=\pi/3}+\frac12\int_{t=\pi/4}^{t=\pi/3}\sec t\,\mathrm dt[/tex]
[tex]\displaystyle=\frac{2\sqrt3-\sqrt2}2+\frac12\ln|\sec t+\tan t|\bigg|_{t=\pi/4}^{t=\pi/3}[/tex]
[tex]=\dfrac{2\sqrt3-\sqrt2}2+\frac12(\ln(2+\sqrt3)-\ln(1+\sqrt2))[/tex]