dy/dx=1/(x^(3/2))+1 which can be expressed as:
dy/dx=x^(-1.5)+1 upon integrating we have:
y(x)=(x^(-.5))/-.5+x+C
y(x)=-2x^(-.5)+x+C, using point (4,5) we can solve for our constant of integration...
5=-2(4^(-.5))+4+C
5=-1+4+C
2=C so
y(x)=-2x^(-.5)+x+2 or if you prefer the uglier form: :P
y(x)=(-2/√x)+x+2