99 POINT QUESTION, AND BRAINLIEST!!!
**Feel free to use any integral, trigonometric, and/or derivative formula(s)...

Evaluate the definite integral from 1 to 14:
⌠1 - cos(4x)
|----------------- dx
⌡4x - sin(4x)


A. (1/4) ln | 56 - sin(56) |               
                 | ---------------- |
                   | 4 - sin(4) |


B. (1/4) ln | 1 - cos(56) |
                | --------------- |
                  | 4 - sin(4) |


C. (1/4) ln | 14 - cos(56) |
                 | ---------------- |
                   | 4 - sin(4) |


D. (1/4) ln | 56 + cos(56) |
               | ------------------- |
                | 4 - sin(4) |


** Sorry for the odd spacing... :(

Please Explain as much as Possible...

Respuesta :

[tex]\displaystyle\int_{x=1}^{x=14}\frac{1-\cos4x}{4x-\sin4x}\,\mathrm dx[/tex]

First, replace [tex]y=4x[/tex] and [tex]\mathrm du=4\,\mathrm dx[/tex]. Then you have

[tex]\displaystyle\frac14\int_{y=4}^{y=56}\frac{1-\cos y}{y-\sin y}\,\mathrm dy[/tex]

If we take [tex]z=y-\sin y[/tex], then immediately we see a differential in the numerator in the form of [tex]\mathrm dz=(1-\cos y)\,\mathrm dy[/tex]. So the integral becomes

[tex]\displaystyle\frac14\int_{z=4-\sin4}^{z=56-\sin56}\frac{\mathrm dz}z[/tex]

and evaluates to

[tex]\dfrac14\ln|z|\bigg|_{z=4-\sin4}^{z=56-\sin56}=\dfrac14\left(\ln|56-\sin56|-\ln|4-\sin4|\right)=\dfrac14\ln\left|\dfrac{56-\sin56}{4-\sin4}\right|[/tex]

making (A) the correct answer.
ACCESS MORE