Respuesta :

[tex]t_{n}=243*3^{(n-1)}[/tex]×

Answer:

[tex]T_n = 243 \times 3^{n-1}[/tex]

Step-by-step explanation:

Given : [tex]t_1=243[/tex]

Expression :[tex]t_{n+1}=3t_n[/tex]

Put n = 1

[tex]t_{1+1}=3\times t_1[/tex]

[tex]t_{2}=3\times 243[/tex]

[tex]t_{2}=729[/tex]

Put n = 2

[tex]t_{2+1}=3\times t_2[/tex]

[tex]t_{3}=3\times729[/tex]

[tex]t_{3}=2187[/tex]

Put n = 3

[tex]t_{3+1}=3\times t_3[/tex]

[tex]t_{4}=3\times2187[/tex]

[tex]t_{4}=6561[/tex]

Continuing in this manner we will get the geometric sequence :

243,729,2187,6561 ........

Formula for nth term of G.P. :[tex]T_n = ar^{n-1}[/tex]

a= 243

r = common ratio between the consecutive terms .

[tex]r=\frac{729}{243}=\frac{2187}{729}=3[/tex]

Substituting values in the formula :

[tex]T_n = 243 \times 3^{n-1}[/tex]

Hence the general term of the sequence is [tex]T_n = 243 \times 3^{n-1}[/tex]

ACCESS MORE