Respuesta :
Answer:
[tex]T_n = 243 \times 3^{n-1}[/tex]
Step-by-step explanation:
Given : [tex]t_1=243[/tex]
Expression :[tex]t_{n+1}=3t_n[/tex]
Put n = 1
[tex]t_{1+1}=3\times t_1[/tex]
[tex]t_{2}=3\times 243[/tex]
[tex]t_{2}=729[/tex]
Put n = 2
[tex]t_{2+1}=3\times t_2[/tex]
[tex]t_{3}=3\times729[/tex]
[tex]t_{3}=2187[/tex]
Put n = 3
[tex]t_{3+1}=3\times t_3[/tex]
[tex]t_{4}=3\times2187[/tex]
[tex]t_{4}=6561[/tex]
Continuing in this manner we will get the geometric sequence :
243,729,2187,6561 ........
Formula for nth term of G.P. :[tex]T_n = ar^{n-1}[/tex]
a= 243
r = common ratio between the consecutive terms .
[tex]r=\frac{729}{243}=\frac{2187}{729}=3[/tex]
Substituting values in the formula :
[tex]T_n = 243 \times 3^{n-1}[/tex]
Hence the general term of the sequence is [tex]T_n = 243 \times 3^{n-1}[/tex]