Respuesta :

The cylinder is symmetric across the plane [tex]y=0[/tex], so we need only consider half of the cut-out region.

This region can be parameterized by

[tex]\mathbf r(r,\theta)=(r\cos\theta,\sqrt{9-r^2\cos^2t},r\sin\theta)[/tex]

with [tex]0\le\theta\le2\pi[/tex] and [tex]0\le r\le3[/tex]. Then the area of this half is given by the surface integral

[tex]\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=3}\left\|\mathbf r_r\times\mathbf r_\theta\right\|\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\int_0^{2\pi}\int_0^3\frac{3r}{\sqrt{9-r^2\cos^2\theta}}\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=36[/tex]

Doubling this gives a total area of 72.
ACCESS MORE