The base of the box is square, so if the sides of the base are [tex]x[/tex] and the box has height [tex]y[/tex], then the volume of the box is
[tex]V=x^2y[/tex]
We are maximizing this subject to the constraint of surface area,
[tex]72=\underbrace{5x^2}_{\text{glass top}}+\underbrace{4xy}_{\text{lateral faces}}+\underbrace{x^2}_{\text{base}}[/tex]
[tex]72=6x^2+4xy[/tex]
Solving for [tex]y[/tex] gives
[tex]y=\dfrac{72-6x^2}{4x}[/tex]
and substituting into the volume equation gives
[tex]V=x^2\dfrac{72-6x^2}{4x}[/tex]
[tex]V=18x-\dfrac32x^3[/tex]
Differentiating, we get
[tex]V'=18-\dfrac92x^2[/tex]
which has roots at [tex]x=\pm2[/tex], but we omit the negative root. So [tex]x=2[/tex].
This means we must have
[tex]y=\dfrac{72-6(2)^2}{4(2)}=6[/tex]