Respuesta :
we can split them up
dy/dx-12x²=-12 times dy/dx x²=-12 times 2x=-24x
dy/dx9x=9 times dy/dx x=9 times 1=9
so
f'(x)=-24x+9
f'(6)=-24(6)+9
f'(6)=-144+9
f'(6)=-135
dy/dx-12x²=-12 times dy/dx x²=-12 times 2x=-24x
dy/dx9x=9 times dy/dx x=9 times 1=9
so
f'(x)=-24x+9
f'(6)=-24(6)+9
f'(6)=-144+9
f'(6)=-135
Answer:
[tex]\frac{dy}{dx}|_{x=6}=-135[/tex]
Step-by-step explanation:
Given : Function [tex]f(x)=-12x^2+9x[/tex]
To find : The derivative of the function at x=6?
Solution :
Function [tex]y=-12x^2+9x[/tex]
Derivative w.r.t x,
[tex]\frac{dy}{dx}=-(2)12x^{2-1}+(1)9x^{1-1}[/tex]
[tex]\frac{dy}{dx}=-24x+9[/tex]
Now, The derivative at x=6 is
[tex]\frac{dy}{dx}|_{x=6}=-24(6)+9[/tex]
[tex]\frac{dy}{dx}|_{x=6}=-144+9[/tex]
[tex]\frac{dy}{dx}|_{x=6}=-135[/tex]
Therefore, [tex]\frac{dy}{dx}|_{x=6}=-135[/tex]