Respuesta :

we can split them up
dy/dx-12x²=-12 times dy/dx x²=-12 times 2x=-24x

dy/dx9x=9 times dy/dx x=9 times 1=9

so

f'(x)=-24x+9
f'(6)=-24(6)+9
f'(6)=-144+9
f'(6)=-135

Answer:

[tex]\frac{dy}{dx}|_{x=6}=-135[/tex]

Step-by-step explanation:

Given : Function [tex]f(x)=-12x^2+9x[/tex]

To find : The derivative of the function at x=6?

Solution :

Function [tex]y=-12x^2+9x[/tex]

Derivative w.r.t x,

[tex]\frac{dy}{dx}=-(2)12x^{2-1}+(1)9x^{1-1}[/tex]

[tex]\frac{dy}{dx}=-24x+9[/tex]

Now, The derivative at x=6 is

[tex]\frac{dy}{dx}|_{x=6}=-24(6)+9[/tex]

[tex]\frac{dy}{dx}|_{x=6}=-144+9[/tex]

[tex]\frac{dy}{dx}|_{x=6}=-135[/tex]

Therefore, [tex]\frac{dy}{dx}|_{x=6}=-135[/tex]