Answer:
[tex]\frac{dy}{dx}|_{x=6}=-135[/tex]
Step-by-step explanation:
Given : Function [tex]f(x)=-12x^2+9x[/tex]
To find : The derivative of the function at x=6?
Solution :
Function [tex]y=-12x^2+9x[/tex]
Derivative w.r.t x,
[tex]\frac{dy}{dx}=-(2)12x^{2-1}+(1)9x^{1-1}[/tex]
[tex]\frac{dy}{dx}=-24x+9[/tex]
Now, The derivative at x=6 is
[tex]\frac{dy}{dx}|_{x=6}=-24(6)+9[/tex]
[tex]\frac{dy}{dx}|_{x=6}=-144+9[/tex]
[tex]\frac{dy}{dx}|_{x=6}=-135[/tex]
Therefore, [tex]\frac{dy}{dx}|_{x=6}=-135[/tex]