In parallelogram ABCD, m<ABD=83, m<BDA=34, and m<BCD=__
![In parallelogram ABCD mltABD83 mltBDA34 and mltBCD class=](https://us-static.z-dn.net/files/d02/e0b0968d3d5cf2001d2e3f96d84db255.png)
Answer:
∠BCD=63°
Step-by-step explanation:
Given:In parallelogram ABCD, ∠ABD=83° and ∠BDA=34°.
To find: Value of ∠BCD
Solution: It is given that ABCD is a parallelogram, thus using the alternate angle property, we have
∠BDA=∠DBC=34°
Therefore, ∠ABC=∠ABD+∠DBC=83+34=117°
Now, ∠ABC+∠BCD=180° (corresponding angles)
⇒∠BCD=180-117
⇒∠BCD=63°
Thus, the measure of the angle BCD is 63°.