Respuesta :

we know that

AB=BC ------> given problem

Step [tex]1[/tex]

In the right triangle BCE

Find the value of BC

Applying the Pythagorean Theorem

[tex]CE^{2}=BC^{2}+BE^{2}\\BC^{2}=CE^{2}-BE^{2}[/tex]

in this problem we have

[tex]CE=12\ units\\BE=5\ units[/tex]

substitute the values

[tex]BC^{2}=12^{2}-5^{2}\\BC^{2}= 119\\BC=\sqrt{119}\ units[/tex]

Step [tex]2[/tex]

In the right triangle ABE

Find the value of AE

Applying the Pythagorean Theorem

[tex]AE^{2}=AB^{2}+BE^{2}[/tex]

in this problem we have

[tex]AB=\sqrt{119}\ units\\BE=5\ units[/tex]

substitute the values

[tex]AE^{2}=\sqrt{119}^{2}+5^{2}[/tex]

[tex]AE^{2}=144[/tex]

[tex]AE=12\ units[/tex]

therefore

the answer is

The length of side AE is [tex]12\ units[/tex]

Answer:

12 units

Step-by-step explanation:

From the given figure, it can be seen that AB=BC, thus

From ΔBEC, using the Pythagoras theorem, we have

[tex](EC)^{2}=(BE)^{2}+(BC)^{2}[/tex]

[tex](12)^2=(5)^2+(BC)^2[/tex]

[tex]144=25+(BC)^2[/tex]

[tex]119=(BC)^2[/tex]

[tex]BC=\sqrt{119} units[/tex]

Now, from ΔABE, using the Pythagoras theorem, we have

[tex](AE)^2=(BE)^2+(AB)^2[/tex]

[tex](AE)^2=25+119[/tex]

[tex](AE)^2=144[/tex]

[tex]AE=12 units[/tex]

Thus, the measure of AE is 12 units.

ACCESS MORE