In the diagram, CE = 12 and BE = 5.
Based on the given information, AE =
![In the diagram CE 12 and BE 5 Based on the given information AE class=](https://us-static.z-dn.net/files/df4/43af5a7336da1461a01c4f38027f8839.png)
we know that
AB=BC ------> given problem
Step [tex]1[/tex]
In the right triangle BCE
Find the value of BC
Applying the Pythagorean Theorem
[tex]CE^{2}=BC^{2}+BE^{2}\\BC^{2}=CE^{2}-BE^{2}[/tex]
in this problem we have
[tex]CE=12\ units\\BE=5\ units[/tex]
substitute the values
[tex]BC^{2}=12^{2}-5^{2}\\BC^{2}= 119\\BC=\sqrt{119}\ units[/tex]
Step [tex]2[/tex]
In the right triangle ABE
Find the value of AE
Applying the Pythagorean Theorem
[tex]AE^{2}=AB^{2}+BE^{2}[/tex]
in this problem we have
[tex]AB=\sqrt{119}\ units\\BE=5\ units[/tex]
substitute the values
[tex]AE^{2}=\sqrt{119}^{2}+5^{2}[/tex]
[tex]AE^{2}=144[/tex]
[tex]AE=12\ units[/tex]
therefore
the answer is
The length of side AE is [tex]12\ units[/tex]
Answer:
12 units
Step-by-step explanation:
From the given figure, it can be seen that AB=BC, thus
From ΔBEC, using the Pythagoras theorem, we have
[tex](EC)^{2}=(BE)^{2}+(BC)^{2}[/tex]
[tex](12)^2=(5)^2+(BC)^2[/tex]
[tex]144=25+(BC)^2[/tex]
[tex]119=(BC)^2[/tex]
[tex]BC=\sqrt{119} units[/tex]
Now, from ΔABE, using the Pythagoras theorem, we have
[tex](AE)^2=(BE)^2+(AB)^2[/tex]
[tex](AE)^2=25+119[/tex]
[tex](AE)^2=144[/tex]
[tex]AE=12 units[/tex]
Thus, the measure of AE is 12 units.