Respuesta :
To answer this, it must be noted that the trigonometric functions sine and cosine will have the same values if the angles are complementary (meaning, their sum is 90°).
90 = (x + 22) + (2x - 7)
The value of x from the equation is 25.
90 = (x + 22) + (2x - 7)
The value of x from the equation is 25.
Answer:
x = 25
Step-by-step explanation:
Given : [tex]\sin (x+22)^{\circ}=\cos (2x-7)^{\circ}[/tex]
We have to find the value of x.
Consider the given [tex]\sin (x+22)^{\circ}=\cos (2x-7)^{\circ}[/tex]
We know,
[tex]\sin\theta=\cos(90^{\circ}-\theta)[/tex]
Consider the left side [tex]\sin (x+22)^{\circ}=\cos(90^{\circ}-(x+22)^{\circ})[/tex]
thus,
[tex]\sin (x+22)^{\circ}=\cos (2x-7)^{\circ}[/tex] becomes,
[tex]\cos(90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ}[/tex]
Simplify for x,
[tex]\cos(68-x)=\cos (2x-7)[/tex]
Thus, 68 - x = 2x - 7
Adding x both side , we have
68 = 3x - 7
Adding 7 both side, we have,
75 = 3x
Divide both side by 3, we have,
x = 25
Thus, x = 25