Respuesta :

To answer this, it must be noted that the trigonometric functions sine and cosine will have the same values if the angles are complementary (meaning, their sum is 90°). 
                                         90 = (x + 22) + (2x - 7)
The value of x from the equation is 25. 

Answer:

x = 25

Step-by-step explanation:

Given : [tex]\sin (x+22)^{\circ}=\cos (2x-7)^{\circ}[/tex]

We have to find the value of x.

Consider the given  [tex]\sin (x+22)^{\circ}=\cos (2x-7)^{\circ}[/tex]

We know,

[tex]\sin\theta=\cos(90^{\circ}-\theta)[/tex]

Consider the left side  [tex]\sin (x+22)^{\circ}=\cos(90^{\circ}-(x+22)^{\circ})[/tex]

thus,

[tex]\sin (x+22)^{\circ}=\cos (2x-7)^{\circ}[/tex] becomes,

[tex]\cos(90^{\circ}-(x+22)^{\circ})=\cos (2x-7)^{\circ}[/tex]

Simplify for x,

[tex]\cos(68-x)=\cos (2x-7)[/tex]

Thus, 68 - x = 2x - 7

Adding x both side , we have

68 = 3x - 7

Adding 7 both side, we have,

75 = 3x

Divide both side by 3, we have,

x = 25

Thus, x = 25

ACCESS MORE