Respuesta :

Answer: [tex]a_{1}[/tex]=-1 ; [tex]a_{n}[/tex]=[tex]a_{n-1}[/tex] +5

Step-by-step explanation: clearly,  [tex]a_{1}[/tex]=-1

now,  [tex]a_{2}[/tex]= [tex]a_{1}[/tex]+5

                                    =-1+5

                                    =4

[tex]a_{3}[/tex]= [tex]a_{2}[/tex]+5

                          =4+5

                          =9

So, in general,  [tex]a_{n}[/tex]=[tex]a_{n-1}[/tex] +5

By identifying type of sequence  we got that recursive definition for the sequence -1,4,9,14... is  [tex]a_n=a_{n-1}+5[/tex]

What is a sequence ?

A sequence is collection of numbers with a particular pattern.

Here given sequence is

-1,4,9,14...

[tex]a_1=-1\\\\a_2=4\\\\a_3=9\\\\a_4=14\\\\\\a_2-a_1=4+1=5\\\\a_3-a_2=9-4=5\\\\a_4-a_3=14-9=5[/tex]

Hence this is an AP with a=-1 and d=5

So general term of this  AP can be written as

So difference of any consecutive terms is equal to 5

[tex]a_n-a_{n-1}=5\\\\a_n=a_{n-1}+5\\\\[/tex]

By identifying type of sequence we got that recursive definition for the sequence -1,4,9,14... is  [tex]a_n=a_{n-1}+5[/tex]

To learn more about sequence visit : brainly.com/question/6561461

ACCESS MORE
EDU ACCESS