Respuesta :
Answer:
The graph approaches 0 as x approaches infinity.
B is correct.
Step-by-step explanation:
Given: [tex]f(x)=\dfrac{2x}{1-x^2}[/tex]
We need to find the behavior of the function.
End Behavior of function f(x)
[tex]x\rightarrow \infty[/tex]
[tex]y=\lim_{x\rightarrow \infty}f(x)[/tex]
[tex]y=\lim_{x\rightarrow \infty}\dfrac{2x}{1-x^2}[/tex]
[tex]y=\lim_{x\rightarrow \infty}\dfrac{2/x}{1/x^2-1}[/tex]
[tex]y=\dfrac{2/\infty}{1/\infty-1}[/tex]
[tex]y=\dfrac{0}{0-1}[/tex]
[tex]y=0[/tex]
Therefore,
If x approaches to infinity, [tex]x\rightarrow \infty[/tex]
then y approaches to 0, [tex]y\rightarrow 0[/tex]
Hence, The graph approaches 0 as x approaches infinity.
Answer:
b. The graph approaches 0 as x approaches infinity.
Step-by-step explanation:
e2021