Respuesta :
The function dy/dx when x is 1 is (y-1)/2
Given the function [tex]y=xy+x^2+1[/tex]
To get the differential of the function, we need to differentiate the function implicitly to have;
[tex]y'=xy'+y+2x+0\\y'-xy'=y+2x\\y'(1-x)=y+2x[/tex]
Divide both sides by 1 - x to have;
[tex]\frac{y'(1-x)}{1-x} =\frac{y+2x}{1-x} \\y'=\frac{y+2x}{1-x}[/tex]
If x = -1
[tex]y'=\frac{y+2(-1)}{1-(-1)}\\y'=\frac{y-1}{2}\\[/tex]
Hence the function dy/dx when x is 1 is (y-1)/2
Learn more here: https://brainly.com/question/3083587