Respuesta :

A function [tex]f(t)[/tex] is periodic if there is some constant [tex]k[/tex] such that [tex]f(t+k)=f(k)[/tex] for all [tex]t[/tex] in the domain of [tex]f(t)[/tex]. Then [tex]k[/tex] is the "period" of [tex]f(t)[/tex].

Example:

If [tex]f(x)=\sin x[/tex], then we have [tex]\sin(x+2\pi)=\sin x\cos2\pi+\cos x\sin2\pi=\sin x[/tex], and so [tex]\sin x[/tex] is periodic with period [tex]2\pi[/tex].

It gets a bit more complicated for a function like yours. We're looking for [tex]k[/tex] such that

[tex]\pi\sin\left(\dfrac\pi2(t+k)\right)+1.8\cos\left(\dfrac{7\pi}5(t+k)\right)=\pi\sin\dfrac{\pi t}2+1.8\cos\dfrac{7\pi t}5[/tex]

Expanding on the left, you have

[tex]\pi\sin\dfrac{\pi t}2\cos\dfrac{k\pi}2+\pi\cos\dfrac{\pi t}2\sin\dfrac{k\pi}2[/tex]

and

[tex]1.8\cos\dfrac{7\pi t}5\cos\dfrac{7k\pi}5-1.8\sin\dfrac{7\pi t}5\sin\dfrac{7k\pi}5[/tex]

It follows that the following must be satisfied:

[tex]\begin{cases}\cos\dfrac{k\pi}2=1\\\\\sin\dfrac{k\pi}2=0\\\\\cos\dfrac{7k\pi}5=1\\\\\sin\dfrac{7k\pi}5=0\end{cases}[/tex]

The first two equations are satisfied whenever [tex]k\in\{0,\pm4,\pm8,\ldots\}[/tex], or more generally, when [tex]k=4n[/tex] and [tex]n\in\mathbb Z[/tex] (i.e. any multiple of 4).

The second two are satisfied whenever [tex]k\in\left\{0,\pm\dfrac{10}7,\pm\dfrac{20}7,\ldots\right\}[/tex], and more generally when [tex]k=\dfrac{10n}7[/tex] with [tex]n\in\mathbb Z[/tex] (any multiple of 10/7).

It then follows that all four equations will be satisfied whenever the two sets above intersect. This happens when [tex]k[/tex] is any common multiple of 4 and 10/7. The least positive one would be 20, which means the period for your function is 20.

Let's verify:

[tex]\sin\left(\dfrac\pi2(t+20)\right)=\sin\dfrac{\pi t}2\underbrace{\cos10\pi}_1+\cos\dfrac{\pi t}2\underbrace{\sin10\pi}_0=\sin\dfrac{\pi t}2[/tex]

[tex]\cos\left(\dfrac{7\pi}5(t+20)\right)=\cos\dfrac{7\pi t}5\underbrace{\cos28\pi}_1-\sin\dfrac{7\pi t}5\underbrace{\sin28\pi}_0=\cos\dfrac{7\pi t}5[/tex]

More generally, it can be shown that

[tex]f(t)=\displaystyle\sum_{i=1}^n(a_i\sin(b_it)+c_i\cos(d_it))[/tex]

is periodic with period [tex]\mbox{lcm}(b_1,\ldots,b_n,d_1,\ldots,d_n)[/tex].