Respuesta :
[tex]y_1 = x^2
A_1 = \int\limits^1_{-1} {x^2} \, dx = \frac{1}{3} x^3 \Big|^{+1}_{-1} = \frac{2}{3}
y_2 = -3
A_2 = \int\limits^1_{-1} {-3} \, dx = -3x \Big|_{-1}^{+1} = -6
[/tex]
The area of the indicated region is 20/3 unit^2
Data;
- y = x^2
- y = -3
- x = [-1, 1]
Area Under the Curve
To find the area under the curve, we have to integrate through the sides
[tex]A = \int\limits^x^=^1_x_=_-_1 [{\int\limits^x^2_y_=_-_3 {x} \, dy } \,] dx[/tex]
This becomes
[tex]A = \int\limits^x^=^1_x_=_-_1 {(x^2+3)} \, dx[/tex]
resolving this,
[tex]A = \frac{20}{3}[/tex]
The area of the indicated region is 20/3 unit^2
Learn more on area under the curve here;
https://brainly.com/question/24954014