Respuesta :

Answer: The remainder will be 5 only.

Explanation:

Since we have given that

[tex]f(x)=3x^4+2x^3-x^2+2x-19[/tex]

and

[tex]g(x)=x+2[/tex]

Now, using the division algorithm, we'll get,

[tex]f(x)=g(x)\times (3x^3-4x^2+7x-12)+5[/tex]

When we compare it with  division lemma, which says that

[tex]f(x)=g(x)\times q(x)+r(x)[/tex]

We get,

[tex]r(x)=5[/tex]

Hence, the remainder will be 5 only.

Answer: Remainder=5


Step-by-step explanation:

We know that the Remainder theorem states that the remainder of the division of a polynomial f(x) by a linear polynomial (x-a) is equal to f(a).

Here [tex]f(x)=3x^4+2x^3-x^2+2x-19[/tex]

The linear polynomial = [tex](x+2)[/tex]

[tex]\Rightarrow\ a=-2[/tex]

[tex]f(-2)=3(-2)^4+2(-2)^3-(-2)^2+2(-2)-19\\\Rightarrow\ f(-2)=3(16)-16+4-4-19\\\Rightarrow\ f(-2)=48-45\\\Rightarrow\ f(-2)=5[/tex]

Hence, the remainder of the given division problem is 5.

ACCESS MORE