Respuesta :
Answer: The remainder will be 5 only.
Explanation:
Since we have given that
[tex]f(x)=3x^4+2x^3-x^2+2x-19[/tex]
and
[tex]g(x)=x+2[/tex]
Now, using the division algorithm, we'll get,
[tex]f(x)=g(x)\times (3x^3-4x^2+7x-12)+5[/tex]
When we compare it with division lemma, which says that
[tex]f(x)=g(x)\times q(x)+r(x)[/tex]
We get,
[tex]r(x)=5[/tex]
Hence, the remainder will be 5 only.
Answer: Remainder=5
Step-by-step explanation:
We know that the Remainder theorem states that the remainder of the division of a polynomial f(x) by a linear polynomial (x-a) is equal to f(a).
Here [tex]f(x)=3x^4+2x^3-x^2+2x-19[/tex]
The linear polynomial = [tex](x+2)[/tex]
[tex]\Rightarrow\ a=-2[/tex]
[tex]f(-2)=3(-2)^4+2(-2)^3-(-2)^2+2(-2)-19\\\Rightarrow\ f(-2)=3(16)-16+4-4-19\\\Rightarrow\ f(-2)=48-45\\\Rightarrow\ f(-2)=5[/tex]
Hence, the remainder of the given division problem is 5.