Answer:
Step-by-step explanation:
(A) From the given figure, it is given that ABC is a triangle and AC=6m, BC=7m and ∠C=83°.
thus, using the law of cosines in the given triangle ABC, we get
[tex](AB)^2=(AC)^2+(BC)^2-2(AB)(BC)cosC[/tex]
Substituting the given values, we have
[tex](AB)^2=(6)^2+(7)^2-2(6)(7)cos83^{\circ}[/tex]
[tex](AB)^2=36+49-84(0.121)[/tex]
[tex](AB)^2=85-10.164[/tex]
[tex](AB)^2=74.836[/tex]
[tex]AB=8.6m[/tex]
Thus, option (C) is correct.
(B) From the given figure, it is given that ABC is a triangle and DE=6ft, DF=11ft and ∠D=40°.
thus, using the law of cosines in the given triangle ABC, we get
[tex](EF)^2=(DE)^2+(DF)^2-2(DE)(DF)cosD[/tex]
Substituting the given values, we have
[tex](EF)^2=(6)^2+(11)^2-2(6)(11)cos40^{\circ}[/tex]
[tex](EF)^2=36+121-132(0.766)[/tex]
[tex](EF)^2=157-101.1[/tex]
[tex](EF)^2=55.9[/tex]
[tex]EF=7.4ft[/tex]