contestada

solve the following system of equations algebraically for all values a b c
-3a-b-3c= -8
-5a+3b+6c= -4
-6a-4b+c= -20

Respuesta :

qt2011

a = 2, b = 2, c = 0
I used the elimination method to solve them
Ver imagen qt2011

How to solve an equation?

The following steps provide a good method to use when solving a system of equations:

  • Simplify each side of the equation by removing parentheses and combining like terms.
  • Use addition or subtraction to isolate the variable term on one side of the equation.
  • Use multiplication or division to solve for the variable.

The values are: a = 2 , b = 2 , and c = 0.

-3a - b - 3c = -8                    ....1

-5a + 3b +6c = -4                 ....2

-6a- 4b + c = -20                  ....3

To find the value of a, add equations 1 and 2 :

          (-3a -  b -    3c = -8) 3

    +    -5a + 3b + 6c = -4

-----------------------------------------------

          -14a + 0 + 0 = -28

-----------------------------------------------

⇒ a = -28 / -14 = 2

a = 2

To find the value of b, add equations 2 and 3 :

          -5a +  3b  + 6c = -4

    +   ( -6a  - 4b   + c   = -20) -6

-----------------------------------------------

         31a  + 27b + 0   = 116

-----------------------------------------------

put the value of a = 2

⇒ 31(2) + 27b = 116

⇒ 62 + 27b =116

⇒ 27b = 54

b = 2

Put the value of a and b in equation 1 to find c :

⇒ -3 (2) - (2) - 3c = -8

⇒  -6 - 2 - 3c = -8

⇒  -8 -3c = -8

⇒ -3 c = 0

c = 0

The equation is a statement of equality between two expressions consisting of variables and/or numbers.

Learn more about the equation here: brainly.com/question/1214333

#SPJ2

ACCESS MORE