Respuesta :
[tex]\cos x(\tan x+\sin x\cot x)=\cos x\left(\dfrac{\sin x}{\cos x}+\sin x\drac{\cos x}{\sin x}\right)=\sin x+\cos^2x[/tex]
The trigonometric identity cos x tan x + sin x cot x = sin x + cos²x cannot be proved.
How to prove trigonometric identity?
cos x tan x + sin x cot x = sin x + cos²x
tan x = sin x / cos x
cot x = 1 / tan x = cos x / sin x
Therefore,
cos x (sin x / cos x) + sin x (cos x / sin x) = sin x + cos²x
hence,
sin x + cos x ≠ sin x + cos²x
Therefore, the trigonometric identity cannot be proven.
learn more on trigonometric identity here: https://brainly.com/question/1553750?referrer=searchResults
#SPJ2