Respuesta :

[tex]\cos x(\tan x+\sin x\cot x)=\cos x\left(\dfrac{\sin x}{\cos x}+\sin x\drac{\cos x}{\sin x}\right)=\sin x+\cos^2x[/tex]

The trigonometric identity cos x tan x + sin x cot x  = sin x + cos²x  cannot be proved.

How to prove trigonometric identity?

cos x tan x + sin x cot x  = sin x + cos²x

tan x = sin x  / cos x

cot x = 1 / tan x = cos x / sin x

Therefore,

cos x  (sin x  / cos x) + sin x (cos x / sin x) = sin x + cos²x

hence,

sin x + cos x sin x + cos²x

Therefore, the trigonometric identity cannot be proven.

learn more on trigonometric identity here: https://brainly.com/question/1553750?referrer=searchResults

#SPJ2