The parabola graph can be drawn through the quadratic function. For the quadratic function, if [tex]a<0[/tex] then graph will open down and if [tex]a>0[/tex] graph will open upward.
Given:
The given parabola equation is [tex]y=-x^2+36[/tex].
Find the intersection point at [tex]y[/tex] for [tex]x=1[/tex]
[tex]y=-(1)^2+36\\y=35[/tex]
The points will be [tex](1,35)[/tex].
Find the intersection point at [tex]y[/tex] for [tex]x=2[/tex].
[tex]y=-(2)^2+36\\y=32[/tex]
The points will be [tex](2,32)[/tex].
Find the intersection point at [tex]y[/tex] for [tex]x=3[/tex].
[tex]y=-(3)^2+36\\y=25[/tex]
The points will be [tex](3,25)[/tex].
Find the intersection point at [tex]y[/tex] for [tex]x=6[/tex].
[tex]y=-(6)^2+36\\y=0[/tex]
The points will be [tex](6,36)[/tex].
Thus, the intersection point will be [tex](6,36)[/tex] and [tex](2,32)[/tex].
Learn more about Parabola here:
https://brainly.com/question/12722131