Refer to the figure and find the volume V generated by rotating the given region about the specified line.
ℛ3 about OC
![Refer to the figure and find the volume V generated by rotating the given region about the specified line ℛ3 about OC class=](https://us-static.z-dn.net/files/d91/cc79f95df80f0163ceb2a5a4955910dd.png)
The volume is 69.675.
It is the reverse of derivation. It is similar to the way of adding the slice to make it whole.
[tex]\rm Volume = \int\limits^a_b {\pi y^{2} } \, dx[/tex]
To find
The volume of the region [tex]\rm R_{3}[/tex].
The limit is from 0 to 1.
The first function is parabola second is the line.
Then volume will be given by
[tex]\rm Volume = \int\limits^3_0 {\pi y_{1}^{2} } \, dx -\int\limits^3_0 {y_{2}^{2} } \, dx \\\\\rm Volume = \int\limits^3_0 {\pi (3x^{\frac{1}{4} })^{2} } \, dx -\int\limits^3_0 {\pi x^{2} } \, dx \\\\ Volume = 9\pi \int\limits^3_0 {x^{0.5 } \, dx - \pi \int\limits^3_0 {x^{2} } \, dx \\\\Volume = 9\pi [\dfrac{x^{1.5} }{1.5} ]_{0}^{3} - \pi [\dfrac{x^{3} }{3} ]_{0}^{3}\\\\\rm Volume =\dfrac{ 9\pi}{1.5} (3^{1.5} -0^{1.5} ) - \dfrac{\pi }{3} (3^{3} -0^{3} )\\\\[/tex]
[tex]\rm Volume = 97.945 - 28.27\\\\ \rm Volume = 69.675[/tex]
Thus the volume is 69.675.
More about the integration link is given below.
https://brainly.com/question/18651211