Respuesta :
Let ABC be the triangle and AD be the angle bisector. Let BD=6 and DC=5 |dw:1359393342358:dw| Do you understand the figure?
Answer:
Longest possible length of III side of triangle =12.7cm
shortest possible length of III side of triangle =4.6cm .
Step-by-step explanation:
Given , an angle bisector of triangle divides the opposite side of triangle into segments 5cm and 3cm long.
In figure I
AB=a, BD=5cm , DC=3cm AC=b
If AB is second side Then AB=7.6cm
Third side=AC=b
Angle bisector theorem : when a ray bisect an angle of tiangle then it divides the opposite side of triangle into two segments which are proportinal to other two sides of the triangle.
Now, by angle bisector theorem
[tex]\frac{a}{5} =\frac{b}{3}[/tex]
a=7.6 cm
[tex]\frac{7.6}{5} =\frac{b}{3}[/tex]
By cross multiply we get
[tex]b=\frac{7.6\times 3}{5}[/tex]
b=4.6cm
III side of triangle =4.6cm
In II figure
we take II side AB=a=7.6 cm
III side=b
Again , by using bisector angle theorem
[tex]\frac{b}{5} =\frac{7.6}{3}[/tex]
By cross multiply
[tex]b=\frac{7.6\times 5}{3}[/tex]
b=12.7 cm
Hence, the longest possible length of III side of triangle =12.7cm
the shortest possible length of III side of triangle =4.6 cm
![Ver imagen lublana](https://us-static.z-dn.net/files/df2/b47f3cd5bdeb6255e2fcf5ff1d95a053.png)
![Ver imagen lublana](https://us-static.z-dn.net/files/d0b/6950fedf5679bb4d0b541f9122c087f4.png)