The coordinates of point A are (-6, 4). The coordinates of point B are (3, 4). Which expression represents the distance, in units, between points A and B?
A. |-6| + |3|
B. |3| - |-6|
C. |-6| + |-4|
D. |4| - |-6|

Respuesta :

[tex]|AB|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}[/tex]

A(-6;4), B(3,4)

[tex]|AB|=\sqrt{(3+6)^2+(4-4)^2}=\sqrt{9^2+0^2}=\sqrt{9^2}=\sqrt{81}=9[/tex]

A. |-6|+|3|=6+3=9 True
B. |3|-|-6|=3-6=-3 False
C. |-6|+|-4|=6+4=10 False
D. |4|-|-6|=4-6=-2 False

The answer: A

:)

Answer:The answer is C

A) (3, 6)  

B) (6, 3)  

C) (−3, 6)  

D) (−3, −6)

Step-by-step explanation:

Point A' represents the reflection of point A across the x-axis. Which coordinate pair represents the location of point A before the transformation?