Respuesta :
[tex]a\equiv1\mod7[/tex] means there is an integer [tex]k_1[/tex] such that [tex]a+7k=1[/tex], or [tex]a=1-7k[/tex].
Raising both sides to an arbitrary integer power, we have
[tex]a^n=(1-7k)^n=\displaystyle\sum_{k=0}^n\binom nk(-7k)^k[/tex]
Notice that each term in the expansion on the right is a multiple of 7 when [tex]1\le k\le n[/tex], which means modulo 7, the right side reduces to 1. Therefore if [tex]a\equiv1\mod7[/tex], then [tex]a^n\equiv1\mod7[/tex] as well.
More generally, the remainder of a number [tex]N[/tex] upon dividing by 7 will be determined by the constant term (independent of [tex]k[/tex]) in the binomial expansion, because any term with a contributing factor of [tex](-7k)[/tex] necessarily is a multiple of 7.
You then have
[tex]a\equiv1\mod7\implies a^{81}\equiv1^{81}\equiv1\mod7[/tex]
[tex]b\equiv2\mod7\implies b^{91}\equiv2^{91}\mod7[/tex]
[tex]c\equiv6\mod7\implies c^{27}\equiv6^{27}\mod7[/tex]
Now,
[tex]a^{81}b^{91}c^{27}\equiv1^{81}2^{91}6^{27}\mod7=2^{118}3^{27}\mod7[/tex]
Recall that for [tex]a_1\equiv b_1\mod n[/tex] and [tex]a_2\equiv b_2\mod n[/tex], we have [tex]a_1a_2\equiv b_1b_2\mod n[/tex], which means we can determine the remainder above by multiplying the remainders given by [tex]2^{118}\mod7[/tex] and [tex]3^{27}\mod7[/tex].
In particular, if [tex]a_1=a_2a_3[/tex], then
[tex]a_1\mod7=\bigg((a_2\mod7)(a_3\mod7)\bigg)\mod7[/tex]
Now, we get by this property in conjunction with Fermat's little theorem that
[tex]2^{118}\mod7=\bigg((2^{115}\mod7)(2^6\mod7)\bigg)\mod7[/tex]
[tex]=2^{112}\mod7[/tex]
[tex]=\bigg((2^{106}\mod7)(2^6\mod7)\bigg)\mod7[/tex]
[tex]=2^{106}\mod7[/tex]
[tex]=2^{100}\mod7[/tex]
[tex]=\cdots[/tex]
[tex]=2^4\mod7[/tex]
[tex]=\bigg((2^3\mod7)(2\mod7)\bigg)\mod7[/tex]
[tex]=2\mod7[/tex]
[tex]3^{27}\mod7=\bigg((3^{21}\mod7)(3^6\mod7)\bigg)\mod7[/tex]
[tex]=3^{21}\mod7[/tex]
[tex]=3^{15}\mod7[/tex]
[tex]=3^9\mod7[/tex]
[tex]=3^3\mod7[/tex]
[tex]=\bigg((3^2\mod7)(3\mod7)\bigg)\mod7[/tex]
[tex]=6\mod7[/tex]
So we obtain
[tex]2^{118}3^{27}\mod7=\bigg((2\mod7)(6\mod7)\bigg)\mod7[/tex]
[tex]=12\mod7[/tex]
[tex]=5\mod7[/tex]
Raising both sides to an arbitrary integer power, we have
[tex]a^n=(1-7k)^n=\displaystyle\sum_{k=0}^n\binom nk(-7k)^k[/tex]
Notice that each term in the expansion on the right is a multiple of 7 when [tex]1\le k\le n[/tex], which means modulo 7, the right side reduces to 1. Therefore if [tex]a\equiv1\mod7[/tex], then [tex]a^n\equiv1\mod7[/tex] as well.
More generally, the remainder of a number [tex]N[/tex] upon dividing by 7 will be determined by the constant term (independent of [tex]k[/tex]) in the binomial expansion, because any term with a contributing factor of [tex](-7k)[/tex] necessarily is a multiple of 7.
You then have
[tex]a\equiv1\mod7\implies a^{81}\equiv1^{81}\equiv1\mod7[/tex]
[tex]b\equiv2\mod7\implies b^{91}\equiv2^{91}\mod7[/tex]
[tex]c\equiv6\mod7\implies c^{27}\equiv6^{27}\mod7[/tex]
Now,
[tex]a^{81}b^{91}c^{27}\equiv1^{81}2^{91}6^{27}\mod7=2^{118}3^{27}\mod7[/tex]
Recall that for [tex]a_1\equiv b_1\mod n[/tex] and [tex]a_2\equiv b_2\mod n[/tex], we have [tex]a_1a_2\equiv b_1b_2\mod n[/tex], which means we can determine the remainder above by multiplying the remainders given by [tex]2^{118}\mod7[/tex] and [tex]3^{27}\mod7[/tex].
In particular, if [tex]a_1=a_2a_3[/tex], then
[tex]a_1\mod7=\bigg((a_2\mod7)(a_3\mod7)\bigg)\mod7[/tex]
Now, we get by this property in conjunction with Fermat's little theorem that
[tex]2^{118}\mod7=\bigg((2^{115}\mod7)(2^6\mod7)\bigg)\mod7[/tex]
[tex]=2^{112}\mod7[/tex]
[tex]=\bigg((2^{106}\mod7)(2^6\mod7)\bigg)\mod7[/tex]
[tex]=2^{106}\mod7[/tex]
[tex]=2^{100}\mod7[/tex]
[tex]=\cdots[/tex]
[tex]=2^4\mod7[/tex]
[tex]=\bigg((2^3\mod7)(2\mod7)\bigg)\mod7[/tex]
[tex]=2\mod7[/tex]
[tex]3^{27}\mod7=\bigg((3^{21}\mod7)(3^6\mod7)\bigg)\mod7[/tex]
[tex]=3^{21}\mod7[/tex]
[tex]=3^{15}\mod7[/tex]
[tex]=3^9\mod7[/tex]
[tex]=3^3\mod7[/tex]
[tex]=\bigg((3^2\mod7)(3\mod7)\bigg)\mod7[/tex]
[tex]=6\mod7[/tex]
So we obtain
[tex]2^{118}3^{27}\mod7=\bigg((2\mod7)(6\mod7)\bigg)\mod7[/tex]
[tex]=12\mod7[/tex]
[tex]=5\mod7[/tex]