Respuesta :
Answer:
[tex] x_1 = \frac{-(-7) - \sqrt{(-7)^2 -4(1)(12)}}{2(1)}= \frac{7-1}{2}= 3[/tex]
[tex] x_2 = \frac{-(-7) + \sqrt{(-7)^2 -4(1)(12)}}{2(1)}= \frac{7+1}{2}= 4[/tex]
So then since we want the lesser root the correct answer on this case is:
D) 3
Step-by-step explanation:
For this case we have the followin expression:
[tex] x^2 -7x +12=0[/tex]
For this case we can use the quadratic formula in order to solve it, given by:
[tex] x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]
And on this case a = 1, b = -7, c = 12. And if we replace we got:
[tex] x_1 = \frac{-(-7) - \sqrt{(-7)^2 -4(1)(12)}}{2(1)}= \frac{7-1}{2}= 3[/tex]
[tex] x_2 = \frac{-(-7) + \sqrt{(-7)^2 -4(1)(12)}}{2(1)}= \frac{7+1}{2}= 4[/tex]
So then since we want the lesser root the correct answer on this case is:
D) 3