Show that the line integral is independent of path by finding a function f such that ?f = f. c 2xe?ydx (2y ? x2e?ydy, c is any path from (1, 0 to (4, 1

Respuesta :

I'm reading this as

[tex]\displaystyle\int_C2xe^{-y}\,\mathrm dx+(2y-x^2e^{-y})\,\mathrm dy[/tex]

with [tex]\nabla f=(2xe^{-y},2y-x^2e^{-y})[/tex].

The value of the integral will be independent of the path if we can find a function [tex]f(x,y)[/tex] that satisfies the gradient equation above.

You have

[tex]\begin{cases}\dfrac{\partial f}{\partial x}=2xe^{-y}\\\\\dfrac{\partial f}{\partial y}=2y-x^2e^{-y}\end{cases}[/tex]

Integrate [tex]\dfrac{\partial f}{\partial x}[/tex] with respect to [tex]x[/tex]. You get

[tex]\displaystyle\int\dfrac{\partial f}{\partial x}\,\mathrm dx=\int2xe^{-y}\,\mathrm dx[/tex]
[tex]f=x^2e^{-y}+g(y)[/tex]

Differentiate with respect to [tex]y[/tex]. You get

[tex]\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)][/tex]
[tex]2y-x^2e^{-y}=-x^2e^{-y}+g'(y)[/tex]
[tex]2y=g'(y)[/tex]

Integrate both sides with respect to [tex]y[/tex] to arrive at

[tex]\displaystyle\int2y\,\mathrm dy=\int g'(y)\,\mathrm dy[/tex]
[tex]y^2=g(y)+C[/tex]
[tex]g(y)=y^2+C[/tex]

So you have

[tex]f(x,y)=x^2e^{-y}+y^2+C[/tex]

The gradient is continuous for all [tex]x,y[/tex], so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is

[tex]\displaystyle\int_C2xe^{-y}\,\mathrm dx+(2y-x^2e^{-y})\,\mathrm dy=f(4,1)-f(1,0)=\frac9e[/tex]
ACCESS MORE
EDU ACCESS