[tex](2x+1)^{\cot x}=\exp\left(\ln(2x+1)^{\cot x}\right)=\exp\left(\cot x\ln(2x+1)\right)=\exp\left(\dfrac{\ln(2x+1)}{\tan x}\right)[/tex]
where [tex]\exp(x)\equiv e^x[/tex].
By continuity of [tex]e^x[/tex], you have
[tex]\displaystyle\lim_{x\to0^+}\exp\left(\dfrac{\ln(2x+1)}{\tan x}\right)=\exp\left(\lim_{x\to0^+}\dfrac{\ln(2x+1)}{\tan x}\right)[/tex]
As [tex]x\to0^+[/tex] in the numerator, you approach [tex]\ln1=0[/tex]; in the denominator, you approach [tex]\tan0=0[/tex]. So you have an indeterminate form [tex]\dfrac00[/tex]. Provided the limit indeed exists, L'Hopital's rule can be used.
[tex]\displaystyle\exp\left(\lim_{x\to0^+}\dfrac{\ln(2x+1)}{\tan x}\right)=\exp\left(\lim_{x\to0^+}\dfrac{\frac2{2x+1}}{\sec^2x}\right)[/tex]
Now the numerator approaches [tex]\dfrac21=2[/tex], while the denominator approaches [tex]\sec^20=1[/tex], suggesting the limit above is 2. This means
[tex]\displaystyle\lim_{x\to0^+}(2x+1)^{\cot x}=\exp(2)=e^2[/tex]