Respuesta :

Problem 1: Evaluate the summation of 3 times negative 2 to the n minus 1 power, ... The one I just posted looks like this: \sum_{n=1}^{122n+5.

Answer:

The sum after evaluation is:

                            216

Step-by-step explanation:

We are asked to evaluate the expression:

[tex]\sum_{n=1}^{12} 2n+5[/tex]

Now, this terms could also be expanded by the form:

[tex]\sum_{n=1}^{12}2n+\sum_{n=1}^{12} 5[/tex]

i.e. it could also be written as:

[tex]2\cdot \sum_{n=1}^{12}n+5\cdot \sum_{n=1}^{12}1[/tex]

We know that:

[tex]\sum_{n=1}^{\infty} n=\dfrac{n(n+1)}{2}[/tex]

Also,

[tex]\sum_{k=1}^{n}1=n[/tex]

Hence, we get:

[tex]\sum_{n=1}^{12} (2n+5)=2\cdot (\dfrac{12\cdot (12+1)}{2})+5\cdot 12[/tex]

i.e.

[tex]\sum_{n=1}^{12} (2n+5)=12\cdot 13+60[/tex]

i.e.

[tex]\sum_{n=1}^{12} (2n+5)=156+60[/tex]

i.e.

[tex]\sum_{n=1}^{12} (2n+5)=216[/tex]

ACCESS MORE
EDU ACCESS